Source code for hydra_zen._launch

# Copyright (c) 2025 Massachusetts Institute of Technology
# SPDX-License-Identifier: MIT
import warnings
from collections import UserList
from collections.abc import Mapping
from dataclasses import fields, is_dataclass
from typing import (
    TYPE_CHECKING,
    Any,
    Callable,
    Generic,
    Optional,
    TypeVar,
    Union,
    cast,
    overload,
)

from hydra import initialize
from hydra._internal.callbacks import Callbacks
from hydra.core.config_store import ConfigStore
from hydra.core.global_hydra import GlobalHydra
from hydra.core.utils import JobReturn, run_job
from hydra.plugins.sweeper import Sweeper
from hydra.types import HydraContext, RunMode
from omegaconf import DictConfig, ListConfig, OmegaConf
from typing_extensions import Literal, TypeAlias

from hydra_zen._hydra_overloads import instantiate
from hydra_zen.typing._implementations import DataClass_, InstOrType

T = TypeVar("T", bound=Any)
HydraPrimitives: TypeAlias = Union[None, int, float, bool, str, dict[str, str]]

if TYPE_CHECKING:  # pragma: no cover
    # branching needed to deal with pyright type-completeness complaints
    TUserList: TypeAlias = UserList[Any]
else:
    TUserList = UserList


class _NotSet:  # pragma: no cover
    pass


T1 = TypeVar("T1", bound=HydraPrimitives)


class hydra_list(TUserList, Generic[T1]):
    """Signals that a sequence is provided as a single configured value (i.e. it is not
    to be iterated over during a multirun)"""


T2 = TypeVar("T2", bound=Union[HydraPrimitives, hydra_list[HydraPrimitives]])


class multirun(TUserList, Generic[T2]):
    """Signals that a sequence is to be iterated over in a multirun"""


def _safe_name(x: Any) -> str:
    return getattr(x, "__name__", str(x))


def value_check(
    name: str,
    value: T,
    type_: Union[type, tuple[type, ...]],
) -> T:
    """
    For internal use only.

    Used to check the type of `value`. Numerical types can also be bound-checked.

    Examples
    --------
    >>> value_check("x", 1, type_=str)
    TypeError: `x` must be of type(s) `str`, got 1 (type: int)

    Raises
    ------
    TypeError"""
    # check internal params
    assert isinstance(name, str), name

    if not isinstance(value, type_):
        raise TypeError(
            f"`{name}` must be of type(s) "
            f"`{_safe_name(type_)}`, got {value} (type: {_safe_name(type(value))})"
        )

    return cast(T, value)


OverrideValues: TypeAlias = Union[
    HydraPrimitives,
    multirun[Union[HydraPrimitives, hydra_list[HydraPrimitives]]],
    hydra_list[HydraPrimitives],
]
OverrideDict: TypeAlias = Mapping[str, OverrideValues]


def _process_dict_overrides(overrides: OverrideDict) -> list[str]:
    """Convert dict overrides to a list of Hydra CLI compatible args"""
    launch_overrides = []
    for k, v in overrides.items():
        if v is None:
            v = "null"

        value_check(
            k,
            v,
            type_=(int, float, bool, str, dict, multirun, hydra_list),
        )
        if isinstance(v, multirun):
            v = ",".join(str(item) for item in v)

        launch_overrides.append(f"{k}={v}")
    return launch_overrides


def _store_config(
    cfg: Union[DataClass_, type[DataClass_], DictConfig, ListConfig, Mapping[Any, Any]],
    config_name: str = "hydra_launch",
) -> str:
    """Stores configuration object in Hydra's ConfigStore.

    Parameters
    ----------
    cfg : Union[DataClass_, DictConfig, Mapping]
        A configuration as a dataclass, configuration object, or a dictionary.

    config_name : str (default: hydra_launch)
        The configuration name used to store the configuration.

    Returns
    -------
    config_name : str
        The configuration name used to store the default configuration.

    Notes
    -----
    The input configuration is registered in the Hydra ConfigStore [1]_ using a
    user-provided config name.

    References
    ----------
    .. [1] https://hydra.cc/docs/tutorials/structured_config/config_store
    """
    cs = ConfigStore().instance()
    cs.store(name=config_name, node=cfg)
    return config_name


@overload
def launch(
    config: Union[InstOrType[DataClass_], Mapping[str, Any]],
    task_function: Callable[[Any], Any],
    overrides: Optional[Union[OverrideDict, list[str]]] = ...,
    multirun: Literal[False] = ...,
    version_base: Optional[Union[str, type[_NotSet]]] = ...,
    to_dictconfig: bool = ...,
    config_name: str = ...,
    job_name: str = ...,
    with_log_configuration: bool = ...,
    **override_kwargs: OverrideValues,
) -> JobReturn: ...


@overload
def launch(
    config: Union[InstOrType[DataClass_], Mapping[str, Any]],
    task_function: Callable[[Any], Any],
    overrides: Optional[Union[OverrideDict, list[str]]] = ...,
    multirun: Literal[True] = ...,
    version_base: Optional[Union[str, type[_NotSet]]] = ...,
    to_dictconfig: bool = ...,
    config_name: str = ...,
    job_name: str = ...,
    with_log_configuration: bool = ...,
    **override_kwargs: OverrideValues,
) -> Any: ...


[docs] def launch( config: Union[InstOrType[DataClass_], Mapping[str, Any]], task_function: Callable[[Any], Any], overrides: Optional[Union[OverrideDict, list[str]]] = None, multirun: bool = False, version_base: Optional[Union[str, type[_NotSet]]] = _NotSet, to_dictconfig: bool = False, config_name: str = "zen_launch", job_name: str = "zen_launch", with_log_configuration: bool = True, **override_kwargs: OverrideValues, ) -> Union[JobReturn, Any]: r""" Launches a Hydra job from a Python function rather than a CLI. `launch` is designed to closely match the interface of the standard Hydra CLI. For example, launching a Hydra job from the CLI via:: $ python my_task.py job/group=group_name job.group.param=1 corresponds to the following usage of `launch`: >>> job = launch(config, task_function, overrides=["job/group=group_name", "job.group.param=1"]) Parameters ---------- config : DataClass_ | Type[DataClass_] | Mapping[str, Any] A config that will be passed to ``task_function``. task_function : Callable[[DictConfig], Any] The function that Hydra will execute. Its input will be ``config``, which has been modified via the specified ``overrides`` overrides : Optional[Union[OverrideMapping, List[str]]] (default: None) If provided, sets/overrides values in ``config``. See [1]_ and [2]_ for a detailed discussion of the "grammar" supported by ``overrides``. multirun : bool (default: False) Launch a Hydra multi-run ([3]_). version_base : Optional[str], optional (default=not-specified) Available starting with Hydra 1.2.0. - If the `version_base parameter` is not specified, Hydra 1.x will use defaults compatible with version 1.1. Also in this case, a warning is issued to indicate an explicit version_base is preferred. - If the `version_base parameter` is `None`, then the defaults are chosen for the current minor Hydra version. For example for Hydra 1.2, then would imply `config_path=None` and `hydra.job.chdir=False`. - If the `version_base` parameter is an explicit version string like "1.1", then the defaults appropriate to that version are used. to_dictconfig : bool (default: False) If ``True``, convert a ``dataclasses.dataclass`` to a ``omegaconf.DictConfig``. Note, this will remove Hydra's cabability for validation with structured configurations. config_name : str (default: "zen_launch") Name of the stored configuration in Hydra's ConfigStore API. job_name : str (default: "zen_launch") with_log_configuration : bool (default: True) If ``True``, enables the configuration of the logging subsystem from the loaded config. **override_kwargs : OverrideValues Keyword arguments to override existing configuration values. Note, this only works when the configuration value name is a valid Python identifier; e.g., this does not support adding (`+param`) values. Returns ------- result : hydra.core.utils.JobReturn | Any If ``multirun is False``: A ``JobReturn`` object storing the results of the Hydra experiment via the following attributes - ``cfg``: Reflects ``config`` - ``overrides``: Reflects ``overrides`` - ``return_value``: The return value of the task function - ``hydra_cfg``: The Hydra configuration object - ``working_dir``: The experiment working directory - ``task_name``: The task name of the Hydra job - ``status``: A ``JobStatus`` enum reporting whether or not the job completed successfully Else: Return values of all launched jobs (depends on the Sweeper implementation). References ---------- .. [1] https://hydra.cc/docs/advanced/override_grammar/basic .. [2] https://hydra.cc/docs/configure_hydra/intro .. [3] https://hydra.cc/docs/tutorials/basic/running_your_app/multi-run Examples -------- **Basic usage** Let's define and launch a trivial Hydra app. >>> from hydra_zen import make_config, launch, to_yaml First, we will define a config, which determines the configurable interface to our "app". For the purpose of example, we'll design the "interface" of this config to accept two configurable parameters: ``a`` and ``b``. >>> Conf = make_config("a", "b") Our task function accepts the config as an input and uses it to run some generic functionality. For simplicity's sake, let's design this task function to: convert the job's config to a yaml-formatted string, print it, and then return the string. >>> def task_fn(cfg): ... out = to_yaml(cfg) # task's input config, converted to yaml-string ... print(out) ... return out Now, let's use `launch` to run this task function via Hydra, using particular configured values (or, "overrides") for ``a`` and ``b``. >>> job_out = launch(Conf, task_fn, a=1, b='foo') a: 1 b: foo Let's inspect ``job_out`` to see the ways that it summarizes the results of this job. >>> job_out.return_value # the value returned by `task_fn` 'a: 1\nb: foo\n' >>> job_out.working_dir # where the job's outputs, logs, and configs are saved 'outputs/2021-10-19/15-27-11' >>> job_out.cfg # the particular config used to run our task-function {'a': 1, 'b': 'foo'} >>> job_out.overrides # the overrides that we provides ['a=1', "b='foo'"] >>> job_out.status # the job's completion status <JobStatus.COMPLETED: 1> **Launching a multirun job** We can launch multiple runs of our task-function, using various configured values. Let's launch a multirun that sweeps over three configurations >>> (outputs,) = launch( ... Conf, ... task_fn, ... a="1,2,3", ... b="bar", ... multirun=True, ... ) [2021-10-19 17:50:07,334][HYDRA] Launching 3 jobs locally [2021-10-19 17:50:07,334][HYDRA] #0 : a=1 b='bar' a: 1 b: bar [2021-10-19 17:50:07,434][HYDRA] #1 : a=2 b='bar' a: 2 b: bar [2021-10-19 17:50:07,535][HYDRA] #2 : a=3 b='bar' a: 3 b: bar ``outputs`` contains three corresponding ``JobReturns`` instances. >>> len(outputs) 3 >>> [j.cfg for j in outputs] [{'a': 1, 'b': 'bar'}, {'a': 2, 'b': 'bar'}, {'a': 3, 'b': 'bar'}] Each run's outputs, logs, and configs are saved to separate working directories >>> [j.working_dir for j in outputs] ['multirun/2021-10-19/17-50-07\\0', 'multirun/2021-10-19/17-50-07\\1', 'multirun/2021-10-19/17-50-07\\2'] **Launching with quoted overrides** Some of the Hydra CLI override syntax cannot be specified as keyword arguments. In such cases we can instead provide a list or a dict with quoted overrides. >>> job_out = launch(Conf, task_fn, a=1, b="foo", overrides={"+c": 22}) a: 1 b: foo c: 22 >>> job_out.overrides # the overrides that we provides ['a=1', 'b=foo', '+c=22'] >>> launch(Conf, task_fn, overrides=["a=1", "b='foo'", "+c=22"]) a: 1 b: foo c: 22 **Using hydra_zen.multirun** Multi-run values can be specified directly, without having to form a quoted multi-run string, by using the `hydra_zen.multi_run` list to store the values. >>> import random >>> from hydra_zen import launch, instantiate, make_config, multirun >>> values_for_experiment = [random.uniform(0, 1) for i in range(10)] >>> jobs = launch( ... make_config(), ... instantiate, ... overrides={ ... "+param": multirun(values_for_experiment) ... }, ... multirun=True ... ) If, instead, you want to configure a list as a single value - not to be iterated over in a multirun - you can instead use `hydra_zen.hydra_list`. """ # used for check below _num_dataclass_fields = 0 if is_dataclass(config): _num_dataclass_fields = len(fields(config)) # store config in ConfigStore if to_dictconfig and is_dataclass(config): # convert Dataclass to a DictConfig dictconfig = OmegaConf.create( OmegaConf.to_container(OmegaConf.structured(config)) ) config_name = _store_config(dictconfig, config_name) else: config_name = _store_config(config, config_name) # allow user to provide a dictionary of override values # instead of just a list of strings overrides = overrides if overrides is not None else [] if isinstance(overrides, Mapping): overrides = _process_dict_overrides(overrides) override_kwargs_list = _process_dict_overrides(override_kwargs) overrides += override_kwargs_list # Initializes Hydra and add the config_path to the config search path with initialize( config_path=None, job_name=job_name, **({} if version_base is _NotSet else {"version_base": version_base}), # type: ignore ): # taken from hydra.compose with support for MULTIRUN gh = GlobalHydra.instance() assert gh.hydra is not None # Load configuration cfg = gh.hydra.compose_config( config_name=config_name, overrides=overrides, run_mode=RunMode.RUN if not multirun else RunMode.MULTIRUN, from_shell=False, with_log_configuration=with_log_configuration, ) callbacks = Callbacks(cfg) run_start = ( callbacks.on_run_start if not multirun else callbacks.on_multirun_start ) run_start(config=cfg, config_name=config_name) hydra_context = HydraContext( config_loader=gh.config_loader(), callbacks=callbacks ) if not multirun: job = run_job( hydra_context=hydra_context, task_function=task_function, config=cfg, job_dir_key="hydra.run.dir", job_subdir_key=None, configure_logging=with_log_configuration, ) callbacks.on_run_end(config=cfg, config_name=config_name, job_return=job) # access the result to trigger an exception in case the job failed. _ = job.return_value else: # Instantiate sweeper without using Hydra's Plugin discovery (Zen!) sweeper = instantiate(cfg.hydra.sweeper) assert isinstance(sweeper, Sweeper) sweeper.setup( config=cfg, hydra_context=hydra_context, task_function=task_function, ) task_overrides = OmegaConf.to_container( cfg.hydra.overrides.task, resolve=False ) assert isinstance(task_overrides, list) job = sweeper.sweep(arguments=task_overrides) callbacks.on_multirun_end(config=cfg, config_name=config_name) if is_dataclass(config): # pragma: no cover _num_dataclass_fields_after = len(fields(config)) if ( _num_dataclass_fields_after == 0 and _num_dataclass_fields_after < _num_dataclass_fields ): warnings.warn( "Your dataclass-based config was mutated by this run. If you just " "executed with a `hydra/launcher` that utilizes cloudpickle (e.g., " "hydra-submitit-launcher), there is a known issue with dataclasses " "(see: https://github.com/cloudpipe/cloudpickle/issues/386). You will " "have to restart your interactive environment to run `launch` again. " "To avoid this issue you can use the `launch` option: " "`to_dictconfig=True`." ) return job