# Copyright (c) 2025 Massachusetts Institute of Technology
# SPDX-License-Identifier: MIT
from typing import Optional, Union
from typing_extensions import Literal
from hydra_zen.typing import DataclassOptions, SupportedPrimitive
from hydra_zen.typing._implementations import (
AllConvert,
DataClass,
DataClass_,
DefaultsList,
ZenConvert,
)
from ._implementations import DefaultBuilds, ZenField
__all__ = ["ZenField", "make_config"]
class NOTHING:
def __init__(self) -> None:
raise TypeError("`NOTHING` cannot be instantiated")
_MAKE_CONFIG_SETTINGS = AllConvert(dataclass=False, flat_target=False)
[docs]
def make_config(
*fields_as_args: Union[str, ZenField],
hydra_recursive: Optional[bool] = None,
hydra_convert: Optional[Literal["none", "partial", "all", "object"]] = None,
hydra_defaults: Optional[DefaultsList] = None,
zen_dataclass: Optional[DataclassOptions] = None,
bases: tuple[type[DataClass_], ...] = (),
zen_convert: Optional[ZenConvert] = None,
**fields_as_kwargs: Union[SupportedPrimitive, ZenField],
) -> type[DataClass]:
"""
Returns a config with user-defined field names and, optionally,
associated default values and/or type annotations.
Unlike `builds`, `make_config` is not used to configure a particular target
object; rather, it can be used to create more general configs [1]_.
Parameters
----------
*fields_as_args : str | ZenField
The names of the fields to be be included in the config. Or, `ZenField`
instances, each of which details the name and their default value and/or the
type annotation of a given field.
**fields_as_kwargs : SupportedPrimitive | ZenField
Like ``fields_as_args``, but field-name/default-value pairs are
specified as keyword arguments. `ZenField` can also be used here
to express a field's type-annotation and/or its default value.
Named parameters of the forms ``hydra_xx``, ``zen_xx``, and ``_zen_xx`` are reserved to ensure future-compatibility, and cannot be specified by the user.
zen_convert : Optional[ZenConvert]
A dictionary that modifies hydra-zen's value and type conversion behavior.
Consists of the following optional key-value pairs (:ref:`zen-convert`):
- `dataclass` : `bool` (default=False):
If `True` any dataclass type/instance without a
`_target_` field is automatically converted to a targeted config
that will instantiate to that type/instance. Otherwise the dataclass
type/instance will be passed through as-is.
bases : Tuple[Type[DataClass], ...], optional (default=())
Base classes that the resulting config class will inherit from.
hydra_recursive : Optional[bool], optional (default=True)
If ``True``, then Hydra will recursively instantiate all other
hydra-config objects nested within this dataclass [2]_.
If ``None``, the ``_recursive_`` attribute is not set on the resulting config.
hydra_convert : Optional[Literal["none", "partial", "all", "object"]], optional (default="none")
Determines how Hydra handles the non-primitive objects passed to configuration [3]_.
- ``"none"``: Passed objects are DictConfig and ListConfig, default
- ``"partial"``: Passed objects are converted to dict and list, with the exception of Structured Configs (and their fields).
- ``"all"``: Passed objects are dicts, lists and primitives without a trace of OmegaConf containers
- ``"object"``: Passed objects are converted to dict and list. Structured Configs are converted to instances of the backing dataclass / attr class.
If ``None``, the ``_convert_`` attribute is not set on the resulting config.
hydra_defaults : None | list[str | dict[str, str | list[str] | None ]], optional (default = None)
A list in an input config that instructs Hydra how to build the output config
[7]_ [8]_. Each input config can have a Defaults List as a top level element. The
Defaults List itself is not a part of output config.
zen_dataclass : Optional[DataclassOptions]
A dictionary can specify any option that is supported by
:py:func:`dataclasses.make_dataclass` other than `fields`.
Additionally, a ``'module': <str>`` entry can be specified to enable pickle
compatibility. See `hydra_zen.typing.DataclassOptions` for details.
frozen : bool, optional (default=False)
.. deprecated:: 0.9.0
`frozen` will be removed in hydra-zen 0.10.0. It is replaced by
``zen_dataclass={'frozen': <bool>}``.
If ``True``, the resulting config class will produce 'frozen' (i.e. immutable)
instances. I.e. setting/deleting an attribute of an instance of the config will
raise :py:class:`dataclasses.FrozenInstanceError` at runtime.
config_name : str, optional (default="Config")
.. deprecated:: 0.9.0
`config_name` will be removed in hydra-zen 0.10.0. It is replaced by
``zen_dataclass={'cls_name': <str>}``.
The class name of the resulting config class.
Returns
-------
Config : Type[DataClass]
The resulting config class; a dataclass that possess the user-specified fields.
Raises
------
hydra_zen.errors.HydraZenUnsupportedPrimitiveError
The provided configured value cannot be serialized by Hydra, nor does hydra-zen
provide specialized support for it. See :ref:`valid-types` for more details.
Notes
-----
The resulting "config" is a dataclass-object [4]_ with Hydra-specific attributes
attached to it, along with the attributes specified via ``fields_as_args`` and
``fields_as_kwargs``. **Unlike std-lib dataclasses, the default value for
unsafe_hash is True.**
Any field specified without a type-annotation is automatically annotated with
:py:class:`typing.Any`. Hydra only supports a narrow subset of types [5]_;
`make_config` will automatically 'broaden' any user-specified annotations so that
they are compatible with Hydra.
`make_config` will automatically manipulate certain types of default values to
ensure that they can be utilized in the resulting config and by Hydra:
- Mutable default values will automatically be packaged in a default factory function [6]_
- A default value that is a class-object or function-object will automatically be wrapped by `just`, to ensure that the resulting config is serializable by Hydra.
For finer-grain control over how type annotations and default values are managed,
consider using :func:`dataclasses.make_dataclass`.
For details of the annotation `SupportedPrimitive`, see :ref:`valid-types`.
See Also
--------
builds : Create a targeted structured config designed to "build" a particular object.
just : Create a config that "just" returns a class-object or function, without instantiating/calling it.
References
----------
.. [1] https://hydra.cc/docs/tutorials/structured_config/intro/
.. [2] https://hydra.cc/docs/advanced/instantiate_objects/overview/#recursive-instantiation
.. [3] https://hydra.cc/docs/advanced/instantiate_objects/overview/#parameter-conversion-strategies
.. [4] https://docs.python.org/3/library/dataclasses.html
.. [5] https://hydra.cc/docs/tutorials/structured_config/intro/#structured-configs-supports
.. [6] https://docs.python.org/3/library/dataclasses.html#default-factory-functions
.. [7] https://hydra.cc/docs/tutorials/structured_config/defaults/
.. [8] https://hydra.cc/docs/advanced/defaults_list/
Examples
--------
>>> from hydra_zen import make_config, to_yaml
>>> def pp(x):
... return print(to_yaml(x)) # pretty-print config as yaml
**Basic Usage**
Let's create a bare-bones config with two fields, named 'a' and 'b'.
>>> Conf1 = make_config("a", "b") # sig: `Conf(a: Any, b: Any)`
>>> pp(Conf1)
a: ???
b: ???
Now we'll configure these fields with particular values:
>>> conf1 = Conf1(1, "hi")
>>> pp(conf1)
a: 1
b: hi
>>> conf1.a
1
>>> conf1.b
'hi'
We can also specify fields via keyword args; this is especially convenient
for providing associated default values.
>>> Conf2 = make_config("unit", data=[-10, -20])
>>> pp(Conf2)
unit: ???
data:
- -10
- -20
Configurations can be nested
>>> Conf3 = make_config(c1=Conf1(a=1, b=2), c2=Conf2)
>>> pp(Conf3)
c1:
a: 1
b: 2
c2:
unit: ???
data:
- -10
- -20
>>> Conf3().c1.a
1
Configurations can be composed via inheritance
>>> ConfInherit = make_config(c=2, bases=(Conf2, Conf1))
>>> pp(ConfInherit)
a: ???
b: ???
unit: ???
data:
- -10
- -20
c: 2
>>> issubclass(ConfInherit, Conf1) and issubclass(ConfInherit, Conf2) # type: ignore
True
**Support for Additional Types**
Types like :py:class:`complex` and :py:class:`pathlib.Path` are automatically
supported by hydra-zen.
>>> ConfWithComplex = make_config(a=1+2j)
>>> pp(ConfWithComplex)
a:
real: 1.0
imag: 2.0
_target_: builtins.complex
See :ref:`additional-types` for a complete list of supported types.
**Using ZenField to Provide Type Information**
The `ZenField` class can be used to include a type-annotation in association
with a field.
>>> from hydra_zen import ZenField as zf
>>> ProfileConf = make_config(username=zf(str), age=zf(int))
>>> # signature: ProfileConf(username: str, age: int)
Providing type annotations is optional, but doing so enables Hydra to perform
checks at runtime to ensure that a configured value matches its associated
type [4]_.
>>> pp(ProfileConf(username="piro", age=False)) # age should be an integer
<ValidationError: Value 'False' could not be converted to Integer>
These default values can be provided alongside type annotations
>>> C = make_config(age=zf(int, 0)) # signature: C(age: int = 0)
`ZenField` can also be used to specify ``fields_as_args``; here, field names
must be specified as well.
>>> C2 = make_config(zf(name="username", hint=str), age=zf(int, 0))
>>> # signature: C2(username: str, age: int = 0)
See :ref:`data-val` for more general data validation capabilities via hydra-zen.
"""
_locals = locals().copy()
fields_as_args = _locals.pop("fields_as_args")
fields_as_kwargs = _locals.pop("fields_as_kwargs")
return DefaultBuilds.make_config(*fields_as_args, **_locals, **fields_as_kwargs) # type: ignore